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1. INTRODUCTION

Various methods have been used for the study of non-linear dynamical systems. The same
methods can be used for piecewise-linear oscillators. By the simultaneous restitution model,
which neglects the impact time so that the restoring force goes to in"nity on impact, Shaw
[1] studied a forced oscillator impacting on two rigid walls, while Cone and Zadoks [2]
considered the vibro-impact system with friction damping.

In order to include a "nite impact time, some authors have assumed a model with elastic
stops having a continuous- and piecewise-linear restoring force. For example, Hu [3, 4]
analyzed the grazing-induced bifurcations of harmonically forced trilinear oscillators and
Natsiavas [5] developed a numerical scheme to locate the periodic motions and to
determine their stability.

Another possible model is a harmonically forced oscillator with a pair of symmetrical
set-up elastic stops. In this case the pre-loaded elastic stops in the oscillator results in a more
complicated restoring force. This model is widely used in vibration control and vibration
machinery. The elastic restoring force in this case is piecewise linear, but if the mass touches
the set-up elastic stops, the restoring force undergoes a "nite jump equal to the pre-load.
Den Hartog [6] studied a harmonically forced, undamped oscillator with a pair of set-up
springs, while Mahfouz and Badrakhan [7] studied numerically the chaotic motion of this
type of oscillators. Hu [8] used the average approach to determine the qualitative changes
of the system dynamics caused by the pre-load on the fundamental resonance of
a harmonically forced oscillator, but with no comparison with numerical results. The same
model is considered in this paper. The relative di!erential equation is

mXG @#c@XQ @#kX@#kag@(X@ )"2f @ cosX@t@, (1a)

where m is the mass quantity, X @+Jk/m the excitation frequency, c@ the linear damping
coe$cient, k the linear sti!ness coe$cient, f @ the excitation semi-amplitude and a the
ratio of the sti!ness of an elastic stop to the linear sti!ness. Moreover, kag@(X@) represents
the restoring force of the symmetrically set-up elastic stops with set-up amount a@ and
clearance b:

g@ (X@)"G
0, DX@ D)b,

X@#(a@!b)sgn X@, DX@ D'b.
(1b)
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The asymptotic perturbation (AP) method [9}11] is used in order to determine an
approximate analytic solution of the system (1a, b). The AP method is based on the
introduction of a slow time and balancing of harmonic terms with a simple iteration. In
a certain sense, the AP method can be considered as an attempt to link the most useful
characteristics of harmonic balance and multiple-scale methods [12, 13]. The formal
perturbation solution is carried out to the lowest order approximation.

The main motivation of this research is to show the feasibility of the AP method in
studying a dynamic system with a discontinuous vector "eld. Moreover, the traditional
harmonic balancing method is only su$cient to construct approximate steady state
solutions for non-linear oscillators, but it cannot furnish any information about stability,
whilst this information is easily obtained by the AP method.

The paper is arranged as follows. In Section 2 a review of the AP method is presented and
it is demonstrated that in a "rst approximation the behaviour of the solution can be
described by means of a model system of di!erential equations, which describe the slow #ow
of amplitude and phase of the approximate solution. In Section 3, frequency- and excitation
amplitude-response curves are derived and the analytic results compared with the
numerical integration. The response of the oscillator appears more complex compared with
the simple linear oscillator. Jump and hysteresis phenomena are present in many regions of
parameter space. The most qualitative change due to the stops is that the periodic motion of
the oscillator loses its stability when it begins to touch the set-up elastic stops with
a decrease in the excitation frequency. Finally, in the last section, the most important results
and some possible generalizations of the present study are summarized.

2. THE APPROXIMATE SOLUTION OF THE AP METHOD

Via the rescalings
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(2)
Equations (1a, b) can be transformed into the dimensionless di!erential equation

XG #X#cXQ #ag(X)"2 f cosXt, (3a)

where

g (X)"G
0, DX D)1,

X#(a!1) sgnX, DX D'1.
(3b)

The AP method used to calculate the approximate solution was "rst developed in
References [9}11] and then in this section the main steps of this perturbation technique are
described. First of all, the slow time

q"et, (4)

is introduced in order to identify the temporal scale where the non-linear e!ects become
consistent and not negligible. If tPR, then eP0, when q assumes a "nite value.

The parameter e can be chosen as one of the small parameters of the system. It is assumed
that c"e and the coe$cients f, a are assumed to be of the order of e (small damping, soft
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excitation and weak non-linearity). The detuned frequency p is introduced in such a way
that

X"1#ep, X2!2ep!e2p2"1. (5)

Equation (3a) yields

XG #X2X!2epX!e2p2X#ecXQ #eag (X)"2e f cosXt. (6)

If e"0 in equation (6), it can be seen that it admits simple harmonic solutions
X(t)"A exp(!iXt)#c.c., where A is a constant depending on the initial conditions and
c.c. stands for complex conjugate. Non-linear e!ects induce a modulation of the amplitude
A and the appearance of higher harmonics. The modulation is best described in terms of the
rescaled variable q, which accounts for the need to consider larger time scales, to obtain
a non-negligible contribution from the non-linear term.

A solution X (t) of equation (6) is sought which can be expressed by means of a power
series in the expansion parameter e:

X (t)"
`=
+

n/~=

ecn t
n
(q, e)exp(!inXt) (7)

with c
n
"Dn D!1 for nO0, and c

0
"1. Note that

t
n
(q, e)"t*

~n
(q, e) (8)

because X (t) is a real function.
The assumed solution (7) can be considered to be a combination of the di!erent

harmonics, and solutions of the linear equation, i.e., of the equation obtained after
neglecting all the non-linear terms, and the coe$cients of this combination depend on q
and e.

Equation (7) can be written more explicity as

X(t)"et
0
(q; e)#(t

1
(q; e)exp(!iXt)

#et
2
(q; e)exp(!2iXt)#c.c.)#O(e2), (9)

where c.c. stands for complex conjugate of the preceding terms. The functions t
n
(q, e)

depend on the parameter e and it is supposed that the limit of the t
n
's for eP0 exists and is

"nite that they can be expanded in power series of e, i.e.,

t
n
(q; e)"

=
+
i/0

e*t (i)
n

(q). (10)

For simplicity in the following the abbreviations t(0)
n
"t

n
for nO1 and t(0)

1
"t for n"1

are used.
Note that the variable change (4) implies that

d

dt
(t

n
exp(!inXt))"A!int

n
#e

dt
n

dq Bexp(!inXt). (11)
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After inserting this expansion into equation (6), equations for every harmonic and for a "xed
order of approximation are obtained. For n"1 at the order of e0

(!X2#X2)t"0 (12)

is obtained, which is identically satis"ed, while at the order of e and for o'1
2

!2iX
dt
dq

!2pt!icXt#

a
nAn!2 arcsinA

1

2oB#
(2a!1)

2o2
J4o2!1B"f. (13)

Substituting the polar form

t (q)"o (q)exp(i0 (q)) (14)

into equation (13), the separating real and imaginary parts, the following model system is
obtained:

do
dq

"!

c

2
o#

f

2X
sin0, (15a)

d0
dq

"

p
X
#

f cos 0
2Xo

!

a
2nXAn!2 arcsinA

1

2oB#
(2a!1)

2o2
J4o2!1B. (15b)

In the case of o)1
2

(linear oscillator) it is su$cient to take a"0.
From equation (9) it can be seen that the approximate solution is

X(t)"2o cos(Xt!0)#O(e). (16)

The validity of the approximate solution should be expected to be restricted on bounded
intervals of the q-variable and on time scale t"O(1/e). If one wishes to construct solutions
on intervals such that q"O(1/e) then the higher order terms must be included, because they
will in general a!ect the solution.

In the next section the equilibrium points of equations (15a, b) will be considered which
correspond to periodic orbits of the starting system (6) and subsequently the approximate
solution (16) will be compared with numerical results.

3. EXCITATION AMPLITUDE AND FREQUENCY-RESPONSE CURVES

Equations (15a, b) are invariant under the transformation fP!f, 0P0!n, and hence
possess the corresponding symmetry. Thus if there is an equilibrium point at ( f, 0

0
), then

there is also one at (!f, 0
0
!n). In order to simplify the following analysis, only half of the

system is considered. If it is stated that the system contains an equilibrium point, then it
actually contains two equilibria, the other one being located at the symmetrical position
under the above-mentioned transformation. Firstly, note that the linear oscillator (a"0)
possesses a stable equilibrium point given by

o
0
"

f

Jc2X2#4p2
, 0

0
"arc tanA

!cX

2p B . (17)

The small amplitude vibrations are always stable.
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Next, the position and the stability of non-linear vibration with large amplitude only are
considered, i.e., the case of o'1

2
. The equilibrium points (o

0
, 0

0
) can be obtained from

Equations (15a, b) and satisfy the equations

X2c2o2
0
#4o2

0Ap!
a
2nAn!2 arcsinA

1

2o
0
B#

(2a!1)

2o2
0

J4o2
0
!1BB"f 2, (18a)

0
0
"arctanA

2nXco2
0

a (2no2
0
!4o2

0
arcsin(1/2o

0
)#(2a!1)J4o2

0
!1)!4npo2

0
B (18b)

which must be solved numerically, for example by the Newton}Raphson method.
In order to establish the stability of steady state solutions, small perturbations are

superimposed in the amplitudes and the phases on the steady state solutions and the
resulting equations are then linearized. Subsequently, the eigenvalues of the corresponding
system of "rst order di!erential equations with constant coe$cients (the Jacobian matrix)
are considered. A positive real root indicates an unstable solution, whereas if the real parts
of the eigenvalues are all negative then the steady state solution is stable.

Results of stability analysis are given in Figure 1 in the parameter space (a, f/a)"(set-up,
excitation amplitude-to-non-linearity ratio). Four regions (I, II, III and IV), exist in which
di!erent fundamental resonance periodic motions can exist. Figure 2 shows four frequency-
response curves corresponding to typical parameter combinations in regions I}IV. The
most important characteristic is that a stable periodic motion loses its stability if the
oscillator touches the elastic stops and the frequency is decreasing. Another interesting
feature is that the static sti!ness of the system increases at "rst and then decreases with
increase of the system displacement. As a result, in cases II and IV various stable periodic
motions (multistability) coexist. The analytic approximate solution (16) have been
Figure 1. Four di!erent types of resonance motions in the parameter space (set-up, excitation amplitude-to-
non-linearity ratio)"(a; f/a).
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compared with numerical results (represented by circles) from the direct integration of the
original equations (3a, b). The fourth order Runge}Kutta method has been used with an
integration step h"n/20X . For the chosen values of parameters there is a satisfactory
agreement between the two solutions.

For the parameter combinations in regions I, II and IV the frequency-response curve
shows a more apparent e!ect of set-up elastic stops on the fundamental resonance, while in
case III it is very similar to that of a system with elastic stops not preloaded [3}5]. Note
that if a parameter is varied so as to pass from one region to another, the system loses its
structural stability. Jump phenomena and hysteresis behaviour appear in regions I, III and
IV. The analysis is in qualitative agreement with the results given by the average approach
of Hu [8].
Figure 2. Frequency-response curves of four types of resonance motions (solid line"stable, dotted
line"unstable, circles"numerical solution): (a) case I, a"0)2, f"0)1, a"1)0, c"0)02; (b) case II, a"0)3,
f"0)14, a"0)2, c"0)02; (c) case III, a"0)2, f"0)04, a"0)5, c"0)02; (d) case IV, a"0)2, f"0)04, a"2)0,
c"0)02.



Figure 2. Continued.

Figure 3 shows the excitation amplitude-response curves. In Figure 3(a) the system
passes through regions III, II and I, while in Figure 3(b) it passes from region IV to I. Also in
these cases the typical hysteresis behaviour is observed.

LETTERS TO THE EDITOR 885
4. CONCLUSION

The AP method has been used for the theory of approximate analytic solutions to
non-linear oscillations of discontinuous piecewise-linear systems. This method is essentially
based on two methods: the harmonic balance method and the perturbation (with two time



Figure 3. Excitation amplitude-response curves and hysteresis behaviour (solid line"stable, dotted
line"unstable, circles"numerical solution): (a) a"0)2, p"0)1, a"0)15, c"0)02; (b) a"0)3, p"0)1,
a"2)0, c"0)02.
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scales) method. The AP method can describe precisely, for the parameter range considered,
the behaviour of a weakly non-linear discontinuous piecewise-linear system for the case of
fundamental resonance.

The AP method derives a system of non-linear model equations describing the
modulation of the amplitude and of the phase of the oscillation. The dependence of
the equilibrium points (periodic solutions of the original system) on the frequency and
amplitude of the external force can be easily deduced.

Qualitative changes of the fundamental resonance appear as a consequence of the
pre-load on the elastic stops in a haromonically forced oscillator. If the excitation frequency
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is decreasing, the periodic motion, when the elastic stops are touched, becomes unstable
when the amplitude increases. Moreover, there are four types of persistent fundamental
resonance and if the excitation amplitude is varied, it is possible to pass from one type to
another.

Numerical results demonstrate the validity of the AP method and suggest that further
study of other non-linear discontinuous piecewise-linear systems, under the e!ects of
di!erent resonances, should be carried out.
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